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GENERAL THEORY OF COLLISION BROADENING OF SPECTRAL LINES' 

0. H. von Roos 

ABSTRACT 

A quantum-mechanical theory of spectral line 
broadening is developed. The theory incorporates Doppler 
broadening and collision broadening in a natural way. 
Working in the interaction representation with respect to 
the collisional degrees of freedom and taking inelastic 
collisions fully into account, general formulas are derived 
for the line shift, the line breadth, and the line shape of 
an optical spectral line of an arbitrary quantum-mechanical 
system provided that the line breadth is small compared 
to the emitted freqyency and that the final state is stable 
( F u n d  state). 

1. INTRODUCTION 

Generally there are two different methods available for dealing with theoretical investigations of the influence 

of collisions on the shape and sh i f t  of spectral lines. These are the impact theory (Ref. 1,2) and the statist ical  

theory (Ref. 1-4). The two methods start  with very different assumptions. In the impact theory one assumes that 
I 

collisions divide the wave of an emitting atom abruptly into incoherent wave trains, resulting in the broadening. In the 

statist ical  theory one assumes that pertnrbing neighbors induce a Stark effect and therefore change the frequency of 

the emitting atom; then the probability that this frequency l ies  between w and w + dw determines the shape of the 

spectral line. Excellent review articles on the subject are available (Ref. 5). 

1 

I 

~ 

I 
'This paper presents the results of one phase of research carried out at the Jet  Propulsion Laboratory, California 

Institute of Technology, under Contract NASw-6, sponsored by the National Aeronautics and Space Administration. 
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It is somewhat surprising, however, that there does not seem to be a general recipe of how to calculate 

spectral line shapes a t  least in principle. The situation is quite different in the field of atomic collisions (Ref. 6). 

Here there is a general theory for binary collisions which is applicable to all kinds of situations: e las t ic  or in- 

e las t ic  collision, low or high impact energies, etc. Although for moderately complex systems the algebra involved in 

calculating cross sections may be formidable, a t  least  in principle the computations can be done and the results will 

agree with experiment. Unfortunately the same cannot be sa id  of theories of spectral line broadening. 

On the other hand, the well-established theory of the natural line width (Ref. 7) does not have any of the 

above mentioned difficulties and as such i s  quite generally applicable for an isolated atom. In this paper a theory of 

line broadening will be given which uses  the general theory of collisions a s  given in Ref. 6 and combines i t  with the 

theory of the natural line width (Ref. 7) to yield a formula for the line shape, etc., which i s  applicable for a wide 

variety of problems. At the same time photon recoil will be incorporated. Since this i s  tantamount to incorporating 

the Doppler effect i t  i s  possible to investigate the interplay between the Doppler effect and collision broadening 

(Ref. 8) .  

In particular, the theory will be developed which will ultimately lead to formulas for the line shape, the line 

width and the line shift. Subsequently, i t  will be shown that the formula for the line shape may be cas t  into a form 

which is essentially equivalent to the formula of the line shape a s  given by the correlation function theory (Ref. 9). 

2 
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II. DEVELOPMENT OF THE THEORY 

Consider two quantum mechanical s y s t e m s  characterized by their respective hamiltonians H ,  (r,) and H ,  ( 1 3 .  

r1 as well as r2 stands for a collection of electron coordinates, as many as are needed to specify the systems. If the 

electrostatic interaction is introduced, as well as the interaction with the radiation field, the starting point may be 

the following Schgdinger equation: 

r 17 
P 

R + rl) - p l  + A R, + - R + r2 

M2 
( 

P 

M l  - e mc lA ( R s -  - 

I 

I 

Here R, is the coordinate of the center of m a s s  of the two systems under consideration, R i s  the relative distance, 

M = M, + M2 is the total m a s s ,  p = M, M , / M ,  + M, the reduced mass ,  4 is the electrostatic interaction potential 

which depends on the relative distance R. The las t  term on the left s ide of Eq. (1) signifies the coupling between 

the radiation field, the latter given by the next to last term, and the electrons. A(r) i s  the vector potential and is 

given by: 

I 

where I/ is the quantization volume, k = h e ,  the photon wave vector e p  a unit vector in one of the two directions of 

polarization (a = 1,2) so that 

ek - e t ’  = o 

and ut ’ *  and up’ are the usual photon creation and destruction operators. 

Define 

H = Ts + H, + 4(rl, r,, R) 

(3) 

(4) 

3 
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?i2 2 
T - - - V  
s -  R S  2M 

and transform Eq. (1) into the interaction representation according to: 

Inserting Eq. (7) into Eq. (1) we find that 4 has  to satisfy: 

So far Eq. (8) is sti l l  exact. The first approximation is now introduced; 4 is written a s  an expansion into zero- and 

one-photon amplitudes, neglecting all states containing more than one photon (first T a m d a n c o f f  approximation): 

In expression (9), Q, is the v a c u m  state  and Q;(k) the one-photon s ta te  with specified photon momentum h k and 

polarization a. Inserting Eq. (9) into Eq. (8) yields two equations for 4, and +,(k). They are: 

and 

f 
In Eq. (10) and (11) the operators D, are defined by: 

4 
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P R + rl! e t )  - p1 + exp 1 i k  - (R, + - P R + r2)] ef) - p p  

M2 

The system of equations (10, (11) has  to be solved subject to certain initial conditions. Present  interest being the 

spontaneous emission of light, take the condition: 

+,(k) = 0 at t = 0 

i.e., no photon present prior to t = 0. For the initial condition on +,, take the following 

4, = $, at t = O  

where $, is a suitable solution of the stationary Schrodinger equation: 

Since Eq. (15) conserves total momentum, 

with 

- 

h2 Ki 

2M 
Ed = E ,  - - 

(13) 

( 14) 

(17) 

Fa  $,, take a comple.2 scattering s ta te  uniquely defined by asymptot.,: conditions. Assume for instance that system 

1 is in i t s  ground s ta te  and system 2 in an excited state characterized by a collection of quantum numbers 1. I t  is 

then possible to expand $, into a complete set: 
- 

where 
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and 

The  wave functions for the relative motion Fnm describe the elastic and inelastic scattering processes. They are 

solutions of their respective equations which may be obtained by inserting the expansion (19) into Eq. (17), supple- 

mented by the following boundary conditions for large R: 

, i K R  

R 
Fol - e i K . R  + fol(e) ___ (23) 

The asymptotic conditions (22) and (23) describe a situation in which we have an incoming plane wave for the 

relative motion of the two systems under consideration, system 1 being in i t s  ground state, system 2 being in the 

excited state 1. From the amplitudes fnm (e) one may derive the inelastic and elastic cross sections in a well-known 

manner (Ref. 6). In Eq. (22) and (23) K and K n m  are defined by: 

R 2  K 2  - -  - T  1 

where T is the kinetic energy of relative motion which is fixed by experimental conditions and 

At th i s  point, a remark about normalization in the continuum i s  in order. I t  is convenient to enclose the system under 

consideration into a large box of volume V in which case  the incoming plane wave i s  normalized to V-' eiKeR and 

the density of particles i s  V-' so that density dependent quantities will easily be identified by their dependence 

on V. 

6 
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Of course, other methods of dealing with the scattering problem Eq. (17) than the one outlined above may be 

employed as well. For  instance, if the kinetic energy of relative motion is small the perturbed stationary-state method 

has  to be applied (Ref. 6), etc. But whatever the case may be, $o may be assumed to be known in the following. 

For the solution of Eq. (10) and (11) i t  is now appropriate to make the ansatz: 

in analogy with the procedure of Ref. 7. It is assumed, in other words, that due to the possibility of a spontaneous 

emission of system 2 the initial s ta te  will decay. It i s  also appropriate to introduce the complete s e t  of wave 

functions defined by 

It i s  not necessary to know anything about these wave functions other than that they form a complete set, both 

continuous and, if bound s ta tes  are possible, discrete. Naturally, $clo belongs to this set. Expanding: 

4, = C b , ( E ,  k ,  t )  $E  (28) 
E 

and inserting Eq. (26) and (28) into (11): 

x b p  [: ( E - $ + l i c k -  ~ 2 i  

which satisfied the initial condition (13). Together with (26) and (B), Eq. (10) gives an equation for r: 
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The summation over k may be replaced by an integral, and provided that the line width r i s  small compared to the 

frequencies involved, Ea. (30) may be written (Ref. 7 and 10): 

P means the principal value with respect to the integration over k. Equation (31) clearly shows that r i s  complex: 

r = rl + ir2 (32) 

The real part rl determines the line width and the imaginary part the line shift. Using the fact that the $E form a 

complete set ,  i t  i s  easy to see from Eq. (31) that the line shift r2 is given by: 

where the operator H i s  given by Eq. (4). The line width rl i s  obtained from Eq. (31) as: 

It i s  clearly seen that no contribution towards the integral (34) ar i ses  if Eo - E < 0. To permit extension of the k 

integration over the whole range, the step function defined by: 

i f k  > 0 

i f k  < O  
S(fick) = {  } 

is introduced, together with the integral representation : 

i ck t iS  e 

S - i e  
S ( h c k )  = lim - 

( 35) 
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Inserting this  last expression into Eq. (34) and interchanging the integration over k and S, it is possible to integrate 

over k without restriction and obtain: 

f The operators D, in expression (37) are defined in the following way 

The unit vectors ek and e t )  ( have already been defined, and the exponentials are defined by 

exP 

and 

L ( E o  -H)ek  - r = 1 (; e k ’ r ) n  ] 1 - (Eo - H ) n  
n = O  n !  

(41) 

To conclude this section a formula for the line shape wi l l  be worked out. From Eq. (29) i t  is known that the prob- 

ability amplitude for finding a photon with momentum k and state of polarization u , the particle system being in state 

$ E ,  is at t =  m: 
L 

9 
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To find the particle system in the following state: 

representing a physical situation in which system 1 and system 2 are in their respective ground states, while the 

relative motion as well as the center-of-mass motion are in definite plane-wave s ta tes ,  according to Eq. (28) is: 

< $ F  = c. ba(E7 k,  m, .<$F / $E  > ( 44) 
E 

The probability of a spontaneous emission of a photon into the frequency range between k and k + dk irrespective of 

both the center-of-mass motion and the relative motion is then given by: 

Eq. (45) is the final expression for the line shape. Eq. ( 3 3 ,  (37) and (45) form the bas is  of the theory. 

10 
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111. DISCUSSION 

Neglecting the electrostatic interaction energy +(I l ,  r2, R) and the photon recoil, the latter by simply 

omitting the dependence of 0,' on R, and R, Eq. (37) for the line width goes directly over into the well-known 

Weisskopf-Wigner formula for the natural line width for a decay into the ground state: 

r - z  (46) 
1 - n  

where w i s  the transition probability from level I to level n and the sum runs over all lower levels. It is not sur- 

prisl'ng that our formulas are not applicable to cases  where a radiative transition takes place into an unstable level 

since the fact that a subsequent photon emission can occur, in itself broadens the line and this possibility has  not 

been taken into account in our calculations,two photon amplitudes having been neglected throughout. Incorporating 

recoil does not change the result (Eq. 46), but the frequencies are shifted by the Doppler effect. In conclusion we 

wish to show that formula (45) for the line shape can be cast  into a form similar to the Fourier integral formula for 

computing line contours (Ref. 9). 

In 

Starting with the identity: 

1 1 1 1 

H - a  H - a  H - a  H - a  
D = D -  + - - -  [ D , H I  - (47) 

holding between any two operators H and D ( [ D ,  H I  = D H  - H D ) ,  the following ser ies  may be generated by repeated 

application of (47): 

1 
00 

1 
- D = 1 [ D , H I ,  
H - a  n = O  ( H  - a)"+' 

where 

is the n-fold commutator of D with H .  Expressing the operator occurring in the matrix element of Eq. (45) by the 

ser ies  (48) and noting that H $ ,  = E,#,, i t  is seen that 

11 
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But from Heisenberg's equation of motion 

i t  follows that 

[ D , , H ]  = ( ix )"  (" D;) 
t =o dt 

so that the ser i e s  (50)  goes over into: 

m 

noting that 

one may write 

which may be written 

(52 )  
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Taking the square of (Xi), after a few rearrangements: 

It can easily be shown that Eq. (5'7) goes over into a formula first given by Anderson (Ref. 11) provided a statistical 

average is taken over the initial s ta tes  y!Jo and a summation over all possible final states. In this  case one may write 

with the help of the density matrix p of the initial states: 

< $ ~ ~ . ( D i ( t ' -  t )  > < $ , ( D , ' ( t )  > = Tr [ p  D:(O) D , ( t ' > ]  (58) 

Inserting this into Eq. (5'7), integrating by parts, and neglecting r with respect to c k, it is possible to arrive a t  

IM l 2  a J +- dt t? - i=k t  Tr [ p  D:(O) D,(t)1 (59) 
-00 

which i s  the formula of Ref. (11). 

13 I 
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